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Abstract: This work is concerned with asymptotic properties of a class

of diffusion processes with jumps. In particular, we show that the prop-

erty of positive recurrence is independent of the choice of the bounded

domain in the state space. A sufficient condition for positive recurrence

using Liapunov functions is derived.
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1 INTRODUCTION

This work focuses on positive recurrence for a class of jump diffusion processes. Our

motivation stems from the study of a family of Markov processes in which both

continuous dynamics and jump discontinuity coexist. Such systems have drawn new

as well as resurgent attention because of the urgent needs of systems modeling,

analysis, and optimization in a wide variety of applications.

Asymptotic properties of diffusion processes and associated partial differential equa-

tions are well known in the literature. We refer to [2, 4] and references therein. Results

for switching diffusion processes can be found in [7]. One of the important problems

in stochastic systems is their longtime behavior. In the literature, criteria for certain

types of weak stability including Harris recurrence and positive Harris recurrence

for continuous time Markovian processes based on Foster-Liapunov inequalities were

developed in [5]. Using results in that paper, some sufficient conditions for ergodicity

of Lévy type operators in dimension one are presented in [6] under the assumption

of Lebesgue-irreducibility. In a recent work [1], the authors discuss positive recur-

rence for jump processes with no diffusion part. Compared to the case of diffusion

processes, even though the classical approaches such as Liapunov function methods
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and Dynkin’s formula are still applicable for jump diffusion processes, the analysis

is much more delicate because of the jump components. In contrast to the existing

results, our new contributions in this paper are as follows. First, we study positive

recurrence for a wide class of jump diffusions by using Khasminskii’s approach devel-

oped in [4]. Second, we show that the property of positive recurrence is independent

of the choice of the bounded domain in the state space. Moreover, we establish a

sufficient condition for positive recurrence using Liapunov functions.

The rest of the paper is arranged as follows. Section 2 begins with the formulation

of the problem. Section 3 presents our main results. Finally, Section 4 concludes the

paper with further remarks.

2 FORMULATION

Notation: Throughout the paper, we use z′ to denote the transpose of z ∈ Rl1×l2

with l1, l2 ≥ 1, and Rd×1 is simply written as Rd. If x ∈ Rd, the norm of x is denoted

by |x|. For any positive integer n, B(0, n) := {x ∈ Rd | |x| < n} is the open ball

with radius n centered at the origin. The term domain in Rd refers to a nonempty

connected open subset of the Euclidean space Rd. If D is a domain in Rd, then D

is the closure of D, Dc = Rd −D is its complement. The space C2(D) refers to the

class of functions whose partial derivatives up to order 2 exist and are continuous in

D, and C2
b (D) is the subspace of C2(D) consisting of those functions whose partial

derivatives up to order 2 are bounded. The indicator function of a set A is denoted

by 1A.

Let b : Rd 7→ Rd, σ : Rd 7→ Rd × Rd, and for each x ∈ Rd, π(x, dz) is a σ-finite

measure on Rd satisfying ∫
Rd

(1 ∧ |z|2)π(x, dz) <∞.

For a function f : Rd 7→ R and f ∈ C2(Rd), we define

Lf(x) =
d∑

k,l=1

akl(x)
∂2f(x)

∂xk∂xl
+

d∑
k=1

bk(x)
∂f(x)

∂xk

+

∫
Rd

(
f(x+ z)− f(x)−∇f(x) · z1{|z|<1}

)
π(x, dz), (2.1)

where a(x) = σ(x)σ′(x) and ∇f denotes the gradient of f .

Let Ω = D
(
[0,∞),Rd

)
be the space of functions (mapping [0,∞) to Rd) that are right

continuous with left limits endowed with the Skorohod topology. Define X(t) = w(t)
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for w ∈ Ω and let {Ft} be the right continuous filtration generated by the process

X(t). A probability measure Px on Ω is called a solution to the martingale problem

for
(
L, C2

b (Rd)
)

started at x if Px(X(0) = x) = 1 and for every f(·) ∈ C2
b (Rd),

f(X(t))− f(X(0))−
∫ t

0

Lf(X(s))ds,

is a Px martingale. If for each x, there is only one such Px, we say that the martingale

problem for
(
L, C2

b (Rd)
)

is well-posed.

We assume the following conditions (A1)-(A4). Note that these conditions ensure

that the martingale problem for (L, C2
b (Rd)) is well-posed and the associated jump

diffusion X(t) is a strong Markov process (see [3]).

(A1) The functions σ(·) and b(·) are bounded and continuous.

(A2) There exists a constant κ1 ∈ (0, 1] such that

κ1|ξ|2 ≤ ξ′a(x)ξ ≤ κ−11 |ξ|2 for all ξ ∈ Rd and x ∈ Rd.

(A3) For each x ∈ Rd, π(x, dz) = π̃(x, z)dz is a σ-finite measure. Moreover, there is

a constant κ2 > 0 such that∫
Rd

(
1 ∧ |z|2

)
π̃(x, z)dz ≤ κ2 for all x ∈ Rd.

(A4) For any r ∈ (0, 1), any x0 ∈ Rd, any x, y ∈ B(x0, r/2) and z ∈ B(x0, r)
c, we

have

π̃(x, z − x) ≤ αrπ̃(y, z − y),

where αr satisfies 1 < αr < κ3r
−β with κ3 and β being positive constants.

Remark 2.1. Note that the measure π(x, dz) can be thought of as the intensity of

the number of jumps from x to x+ z. Condition (A3) and (A4) tell us that π(x, dz)

is absolutely continuous with respect to the Lebesgue measure dz on Rd, and the

intensities of jumps from x and y to a point z are comparable if x, y are relatively

far from z but relatively close to each other.

3 MAIN RESULTS

For simplicity, we introduce some notation as follows. For any D ⊂ Rd, we define

τD = inf{t ≥ 0 : X(t) /∈ D}, σD = inf{t ≥ 0 : X(t) ∈ D}.
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Let βn = inf{t ≥ 0 : |X(t)| ≥ n} be the first exit time of the process X(t) from

the bounded set B(0, n). Then the sequence {βn} is monotonically increasing and

βn → ∞ almost surely as n → ∞. We will use this fact frequently in what follows.

To proceed, we recall the definition of positive recurrence (see [4, 7]).

Definition 3.1. Suppose D ⊂ Rd is a bounded domain. A process X(t) is said to

be positive recurrent with respect to D if for any x ∈ Dc,

Px (σD <∞) = 1 and Ex[σD] <∞.

We will establish certain preparatory results. The first one asserts that the process

X(t) will exit every bounded domain with a finite mean exit time.

Lemma 3.2. Let D ⊂ Rd be a bounded domain. Then

sup
x∈D

Ex[τD] <∞. (3.2)

Proof. By the uniform ellipticity condition in (A2), we have

κ1 ≤ a11(x) ≤ κ−11 for all x ∈ D. (3.3)

Let f ∈ C2
b (Rd) be such that f(x) = (x1 + β)γ if x ∈ {y : d(y,D) < 1}, where the

constants γ and β are to be specified and x1 is the first component of x. Since D is

bounded, we can choose constant β such that 1 ≤ x1 +β for all x ∈ D and f(x) ≥ 0

for all x ∈ Rd. Let

γ :=
1

κ1

(
sup
x∈D

[
|b1(x)|(x1 + β) + κ2(x1 + β)2

]
+ 1

)
+ 2 <∞,

where κ1 and κ2 is the constants given in assumption (A2) and (A3). Then we have

by (3.3) that

b1(x)(x1 + β) + (γ − 1)a11(x)− κ2(x1 + β)2 ≥ 1 for all x ∈ D. (3.4)

Direct computation leads to

Lf(x) = γ(x1 + β)γ−2 [b1(x)(x1 + β) + (γ − 1)a11(x)]

+

∫
|z|≤1

[
f(x+ z)− f(x)−∇f(x) · z

]
π̃(x, z)(dz)

+

∫
|z|>1

[
f(x+ z)− f(x)

]
π̃(x, z)(dz).

(3.5)
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Since γ > 2, f is convex on {x ∈ Rd : d(x,D) < 1}. It follows that∫
|z|≤1

[
f(x+ z)− f(x)−∇f(x) · z

]
π̃(x, z)(dz) ≥ 0. (3.6)

It is also clear that∫
|z|>1

[
f(x+ z)− f(x)

]
π̃(x, z)(dz) ≥ −

∫
|z|>1

(x1 + β)γπ̃(x, z)(dz)

≥ −κ2(x1 + β)γ.

(3.7)

It follows from (3.5), (3.6), (3.7), and (3.4) that Lf(x) ≥ γ for any x ∈ D. Let

τD(t) = min{t, τD}. Then we have from Dynkin’s formula that

Exf (X(τD(t)))− f(x)

= Ex
∫ τD(t)

0

f(X(s))ds ≥ γEx[τD(t)].

Hence

Ex[τD(t)] ≤ 1

γ
sup
x∈Rd

f(x) := M. (3.8)

Note that M is finite since f ∈ C2
b (Rd). Since Ex[τD(t)] ≥ tPx[τD > t], it follows

from (3.8) that tPx[τD > t] ≤ M. Letting t → ∞, we obtain Px[τD = ∞] = 0; that

is, Px[τD < ∞] = 1. This yields that τD(t) → τD a.s. Px as t → ∞. Now applying

Fatou’s lemma, as t→∞ in (3.8) we obtain

Ex[τD] ≤M <∞. (3.9)

This proves the theorem. 2

Lemma 3.3. Let E, D, G be bounded domains in Rd such that E ⊂ E ⊂ D ⊂ D ⊂
G, and

u(x) = Px(σE < τG) for x ∈ Rd.

Then there exists a positive constant δ such that u(x) ≥ δ for x ∈ D.

Proof. If π̃(x, z) = 0 for some (x, z) ∈ Rd × Rd, then X(t) is a diffusion process. In

this case, the conclusion follows immediately from the theory of diffusion processes

(see [4, 2]). Therefore, we suppose that π̃(x, z) > 0 for all (x, z) ∈ Rd×Rd. For each

r ∈ (0, 1/2), we define Er := {x ∈ E : d(x, ∂E) > r}. Let r0 ∈ (0, 1/2) such that

E2r0 6= ∅ and B(x, r0) ⊂ G for all x ∈ D. Let y ∈ D − E. By Proposition 3.3 in [3],∑
s≤t

1{X(s−)∈G−Er0 ,X(s)∈E2r0}
−
∫ t

0

∫
E2r0

1G−Er0
(X(s))π̃(X(s), z −X(s))dzds
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is a Py-martingale. We deduce that

Py
(
X(τG−Er0

∧ t) ∈ E2r0

)
= Ey

[ ∑
s≤τG−Er0

∧t

1{X(s−)∈G−Er0 ,X(s)∈E2r0}

]
= Ey

[ ∫ τG−Er0
∧t

0

∫
E2r0

1G−Er0
(X(s))π̃(X(s), z −X(s))dzds

]
= Ey

[ ∫ τG−Er0
∧t

0

∫
E2r0

π̃(X(s), z −X(s))dzds

]
= Ey

[ ∫ τG−Er0
∧t

0

∫
E2r0

c1dzds

≥ c1c2Ey[τG−Er0
∧ t],

(3.10)

where c1 = inf{π̃(x, z − x) : x ∈ G − Er0 , z ∈ E2r0} > 0 and c2 is the volume

of E2r0 in Rd. Since τG−Er0
≥ τB(y,r0) and Ey[τB(y,r0)] ≥ c3r

2
0 for some constant

c3 > 0 (see [3, Lemma 3.3]), then Ey[τG−E2r0
] ≥ c3r

2
0. Hence, for a sufficiently large

t > 0, Ey[τG−Er0
∧ t] ≥ c3r

2
0

2
. It follows from (3.10) that Py

(
X(τG−Er0

) ∈ E2r0

)
≥

0.5c1c2c3r
2
0; that is, u(y) ≥ 0.5c1c2c3r

2
0. Since y ∈ G − E is arbitrary, we arrive at

u(y) ≥ 0.5c1c2c3r
2
0 for any y ∈ G−E. By defining δ = min{1, 0.5c1c2c3r20}, we obtain

u(x) ≥ δ for any x ∈ D. This completes the proof. 2

The following criterion for positive recurrence of the process X(t) is given based on

the existence of certain Liapunov functions.

Theorem 3.4. A sufficient condition for the positive recurrence of X(t) with respect

to D ⊂ Rd is: The operator L satisfies the following condition (L) with respect to D.

(L) There exists a nonnegative function V ∈ C2(Rd) satisfying

LV (x) ≤ −1 for any x ∈ Dc. (3.11)

Proof. Assume that V ∈ C2(Rd) and LV (x) ≤ −1 for any x ∈ Dc. Take a sufficiently

large positive integer n0 so that D ⊂ B(0, n0). Fix a point x ∈ Dc. For any t > 0

and n ≥ n0, we define

σ
(n)
D (t) = min{σD, t, βn},

where βn is the first exit time from B(0, n) and σD is the first entrance time to D.

Let fn : Rd 7→ R be a smooth cut-off function that takes values in [0, 1] satisfying

fn = 1 on B(0, n) and fn = 0 outside of B(0, n + 1). Then Vn := fnV ∈ C2
b (Rd).

Moreover, 0 ≤ Vn(x) ≤ V (x) for x ∈ Rd. It follows from (3.11) that

LVn(y) ≤ LV (y) ≤ −1 for y ∈ B(0, n)−D.
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Dynkin’s formula implies that

ExVn
(
X
(
σ
(n)
D (t)

))
− Vn(x)

= Ex
∫ σ

(n)
D (t)

0

LVn (X(s)) ds ≤ −Ex
[
σ
(n)
D (t)

]
.

Note that the function Vn is nonnegative; hence we have Ex
[
σ
(n)
D (t)

]
≤ Vn(x) = V (x).

Meanwhile, since βn → ∞ a.s as n → ∞, σ
(n)
D (t) → σD(t) a.s as n → ∞, where

σD(t) = min{σD, t}. By virtue of Fatou’s lemma, we obtain Ex[σD(t)] ≤ V (x). Now

the argument after (3.8) in the proof of Lemma 3.2 yields that

Ex[σD] ≤ V (x) <∞. (3.12)

Since x ∈ Dc is arbitrary, then X(t) is positive recurrent with respect to D. 2

Theorem 3.5. Let D ⊂ Rd be a bounded domain and suppose that L satisfies con-

dition (L) with respect to D. Then for any bounded domain E ⊂ Rd, X(t) is positive

recurrent with repsect to E; that is, Ex[σE] <∞ for any x ∈ Ec.

Proof. Since L satisfies condition (L) with respect to D,

Ey[σD] <∞ for any y ∈ Dc. (3.13)

Without loss of generality, we suppose that E ⊂ D. LetG be a domain in Rd such that

D ⊂ G. Define a sequence of stopping times by τ0 = 0, τ1 = inf{t > 0 : X(t) ∈ Gc}
and for n = 1, 2, . . . ,

τ2n = inf{t > τ2n−1 : X(t) ∈ D}, τ2n+1 = inf{t > τ2n : X(t) ∈ Gc}. (3.14)

It follows from (3.13), Lemma 3.2, and the strong Markov property that for each

x ∈ D and n = 1, 2, . . . , τn <∞ Px a.s.. Define

An = {X(t) ∈ E for some t ∈ [τ2n, τ2n+1)}, n = 0, 1, 2, . . . . (3.15)

By Lemma 3.3, there exists δ > 0 such that inf
x∈D

Px(σE < τG) > δ. It follows that

Px(Ac0) ≤ 1− δ. By the strong Markov property, induction on n yields

Px

(
n−1⋂
k=0

Ack

)
≤ (1− δ)n, n = 1, 2, . . . , x ∈ D. (3.16)
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To prove the theorem, it suffices to prove (3.13) for x ∈
(
D − E

)
. To this end, we

claim that

M2 := sup
y∈D

Ey[τ2] <∞. (3.17)

By Lemma 3.2, we have M1 := sup
y∈D

Ey[τ1] < ∞. Meanwhile, by (3.12) in the proof

of Theorem 3.4, we obtain Ey[σD] ≤ V (y) for y ∈ Gc. Hence to prove (3.17), it

suffices to show that

sup
y∈D

∫
Gc

V (z)Pτ1(y, dz) <∞,

where Pτ1(y, ·) is the distribution of Xy(τ1). Since V is bounded on compact sets,

it is enough if we can find a open ball B(0, R) with R sufficiently large such that

{y : d(y,G) < 2} ⊂ B(0, R) and

sup
y∈D

∫
B(0,R)c

V (z)Pτ1(y, dz) <∞. (3.18)

Let a point x∗ ∈ ∂G. Then for any y ∈ G and z ∈ B(0, R)c, there is a sequence

{xi : i = 0, ..., ñ} such that x0 = y, xñ = x∗, |xi − xi−1| < 1/2 and xi ∈ G for

i = 1, . . . , ñ. Since G is bounded, ñ can be independent of y. By assumption (A4),

we have

π̃(xi−1, z − xi−1) ≤ α1/2π̃(xi, z − xi), i = 1, . . . , ñ.

Thus, there is a positive constant K = αñ1/2, depending only on G such that

π̃(x, z − x) ≤ Kπ̃(x∗, z − x∗) for y ∈ G, z ∈ B(0, R)c.

Let y ∈ D and A ⊂ B(0, R)c. By Proposition 3.3 in [3],

∑
s≤t

1{X(s−)∈G,X(s)∈A} −
∫ t

0

∫
A

1G(X(s))π̃(X(s), z −X(s))dzds,

is a Py-martingale. We deduce that

Py (X(τ1 ∧ t) ∈ A) = Ey
[ ∑
s≤τ1∧t

1{X(s−)∈G,X(s)∈A}

]
= Ey

[ ∫ τ1∧t

0

1{X(s)∈G}

∫
A

π̃(X(s), z −X(s))dzds

]
≤ KEy

[ ∫ τ1∧t

0

∫
A

π̃(x∗, z − x∗)dzds
]

≤ KEy (τ1 ∧ t)µ(A),

(3.19)
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where µ is a measure on B(0, R)c with density π̃(x∗, z− x∗). Using assumption (A3)

and the fact that A∩B(0, R) ⊂ B(0, R)c ∩B(0, R) = ∅, we have µ(A) <∞. Letting

t→∞ and using Fatou’s lemma on the left-hand side and the dominated convergence

theorem on the right-hand side in (3.19), we have

Py (X(τ1) ∈ A) ≤ KEy[τ1]µ(A) ≤ KM1µ(A),

where M1 = sup
z∈D

Ez[τ1]. Hence Pτ1(y, A) ≤ KM1µ(A). It follows that

∫
B(0,R)c

V (z)Pτ1(y, dz) ≤ KM1

∫
B(0,R)c

V (z)π̃(x∗, z − x∗)dz

= KM1

∫
B(0,R)c−x∗

V (z + x∗)π̃(x∗, z)dz.
(3.20)

Take R sufficiently large such that B(0, R)c − x∗ ⊂ {z ∈ Rd : |z| > 1}. Since L
satisfies condition (L) with respect to D and x∗ /∈ D, we have LV (x∗) < ∞. This

leads to the finiteness of the last term in (3.20). The desired inequality (3.18) then

follows. Therefore we have

Ex[σE] =
∞∑
n=0

Ex[σE]1[τ2n≤σE<τ2n+2]

≤
∞∑
n=0

Px[τ2n ≤ σE < τ2n+2]Ex[τ2n+2]

≤
∞∑
n=0

Px[τ2n ≤ σE < τ2n+1]
n∑
k=0

Ex (τ2k+2 − τ2k)

≤
∞∑
n=0

(1− δ)n(n+ 1)M2 <∞.

This completes the proof of theorem. 2

4 FURTHER REMARKS

This paper focused on positive recurrence of a class of jump diffusion processes.

A criterion for positive recurrence was derived. The results obtained here will help

future studies on controlled jump diffusion systems. A problem of interest is to

develop practical criteria for positive recurrence of diffusions with jumps.
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